regular adj. 1.有規(guī)則的,有規(guī)律的;有秩序的,井井有條的,整齊的;正規(guī)的,正式的。 2.端正的,勻稱的,調(diào)和的,和諧的;首尾一貫的,一律的。 3.不變的,一定的;常例的,平常的;習(xí)慣的,非偶然的;定期的,定時(shí)的。 4.【軍事】常備的,正規(guī)的。 5.合格的,得到營(yíng)業(yè)執(zhí)照的,掛牌的(醫(yī)師等),公認(rèn)的。 6.【語(yǔ)法】按規(guī)則變化的。 7.【數(shù)學(xué)】等邊等角的;【結(jié)晶】等軸的;〔立體〕各面大小形狀相等的;【植物;植物學(xué)】整齊的(花)。 8.【宗教】受教規(guī)束縛的;屬于教團(tuán)的。 9.〔口語(yǔ)〕十足的,真正的,名符其實(shí)的;徹底的。 10.〔美口〕誠(chéng)實(shí)的,可靠的。 regular procedure 正規(guī)手續(xù)。 a regular member 正式會(huì)員。 regular people 生活有規(guī)律的人〔尤指大便、月經(jīng)有定時(shí)的〕。 a regular pulse 規(guī)則脈。 regular features 端正的面貌。 a regular customer 老主顧。 regular holidays 正式假日。 regular service 定期航行,定期開(kāi)車(chē)(等)。 the regular army 正規(guī)軍,常備軍。 a regular verb 規(guī)則動(dòng)詞。 a regular hero 真正的英雄。 a regular rascal 十足的惡棍。 a regular fellow [guy] 〔美口〕受大家歡迎的人;(用錢(qián))手松的人;有趣的家伙。 keep regular hours 過(guò)有規(guī)律的生活。 adv. 1.有規(guī)則地,定期地,經(jīng)常地。 2.完全,非常。 He comes regular. 他經(jīng)常來(lái)。 It happens regular. 這經(jīng)常發(fā)生。 n. 1.〔常 pl.〕正規(guī)兵,常備兵;(球隊(duì)的)正式隊(duì)員。 2.〔口語(yǔ)〕長(zhǎng)期雇工;固定職工;老主顧,常客。 3.【宗教】修道士。 4.〔美國(guó)〕(某黨派的)忠誠(chéng)支持者。 5.〔俚語(yǔ)〕〔pl.〕贓物的份兒。 adv. -ly
sequence n. 1.繼續(xù);接續(xù);連續(xù)。 2.順序;程序;次第;關(guān)系;關(guān)聯(lián)。 3.后果;結(jié)果;接著發(fā)生的事;后事;后文。 4.【數(shù)學(xué)】數(shù)列;序列;數(shù)貫。 5.【無(wú)、計(jì)】指令序列;定序。 6.【計(jì)算機(jī)】順序機(jī)〔將信息項(xiàng)目排成順序的機(jī)器〕。 7.【音樂(lè)】用不同音調(diào)反復(fù)演奏一組樂(lè)句。 8.【天主教】宣講福音前唱的圣歌。 9.【牌戲】順。 10.【電影】(描述同一主題的)連續(xù)鏡頭;片斷,插曲;場(chǎng)景。 a logical sequence 條理;邏輯順序。 a causal [physical] sequence 因果關(guān)系。 the natural sequence to [for] folly 愚笨行為的必然結(jié)果。 in rapid sequence 一個(gè)接著一個(gè);緊接著。 in regular sequence 挨次;按次序;逐一;有條不紊地。 in sequence 挨次;順次;逐一。 sequence of tenses 【語(yǔ)法】時(shí)態(tài)的配合[接續(xù),呼應(yīng)]。
2insert the button plank in regular sequence 2將扣板按次序插入
Improved right regular sequences of low - density erasure codes are presented , and it is testified that the sequences are asymptotically quasi - optimal 提出了一種改進(jìn)型右邊正則序列,證明了此序列為漸近擬最優(yōu)的。
It is shown that low - density erasure codes based on ( d , 2d ) - regular sequences of degree distribution are not close to optimal ( d > 3 ) . 3 從理論上證明了基于( d , 2d ) -正則度序列的低密度糾刪碼都不是漸近最優(yōu)碼( d 3 ) ; 3
Heavy - tail / poisson and right - regular sequences are analyzed in detail and a new method for designing the two classes of sequences above is presented 在對(duì)heavy - tail / poisson序列和右邊正則度序列的詳細(xì)分析的基礎(chǔ)上提出了一種新的設(shè)計(jì)方法。
In a synchronic or mirrored event it means that events have connection or are linked in ways other than regular sequence like flow lines are 同步性發(fā)生就是單獨(dú)自己顯露出來(lái)的對(duì)我們很重要的一個(gè)事件,在我們每一天的生命里,支撐起從深層意識(shí)到外部實(shí)相意識(shí)的橋梁。
Sequences of degree distribution for low - density erasure codes are investigated . some analytical properties of the heavy - tail / poisson sequences , right - regular sequences and general capacity - achieving sequences for low - density erasure codes are shown . 7 對(duì)低密度糾刪碼的度分布序列進(jìn)行了研究,證明了heavy - tail / poisson序列、右邊正則序列和一般的逼近容量度序列的若干分析性質(zhì)。
The principles of erasure codes used under binary erasure channels are summarized and erasure codes which belong to standard classes of rs codes are introduced with emphasis on cascaded low - density erasure codes with linear time encoding and erasure recover algorithms . thresholds of regular degree distributions are analyzed . it is shown that low - density erasure codes based on ( d , 2d ) - regular sequences of degree distribution are not close to optimal ( d 3 ) . two pares of irregular degree distribution sequences are introduced and a pare of improved right regular sequences of low - density erasure codes are presented , it is testified that the new sequences are asymptotically quasi - optimal . in the meantime , simulations of cascaded low - density erasure codes based on a few types of special sequences of degree distribution available are given , together with performance analyses on these codes 闡述了應(yīng)用于刪除信道下的糾刪碼基本原理,介紹了兩類標(biāo)準(zhǔn)的rs碼類糾刪碼,重點(diǎn)分析了具有線性時(shí)間編碼和恢復(fù)算法的漸近好碼?級(jí)聯(lián)型低密度糾刪碼,分析了正則度分布的閾值,對(duì)正則低密度校驗(yàn)碼在刪除信道下的糾錯(cuò)性能進(jìn)行了仿真,從理論上證明了基于( d , 2d ) -正則度序列的低密度糾刪碼都不是漸近最優(yōu)碼( d 3 ) ,同時(shí)還分析了非正則低密度校驗(yàn)碼的度序列設(shè)計(jì),基于右邊正則序列提出了一種改進(jìn)型右邊正則序列,證明了此序列為漸近擬最優(yōu)的,對(duì)基于幾類現(xiàn)有典型度分布序列的級(jí)聯(lián)型低密度糾刪碼進(jìn)行了模擬仿真及性能分析; 3
百科解釋
In commutative algebra, if R is a commutative ring and M an R-module, a nonzero element r in R is called M-regular if r is not a zerodivisor on M, and M/rM is nonzero. An R-regular sequence on M is a d-tuple